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Tracking is rather important …

➡ Reconstruct tracks 

• Find single particles 

• Measure momenta 

• Identify particles 

➡ Reconstruct vertices
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Menu for today

➡ Get to know the CMS Silicon Tracker and how the tracks 
and vertices are reconstructed 

➡ Learn how to assess track information for analysis 
purposes in different data formats 

➡ Use track information to understand the particle 
interactions in an event 

➡ Use track information to measure the tracking efficiency
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Tracking is everything
• The reconstruction of charged particle tracks and vertices is fundamental to the 

reconstruction of every type of physics event in CMS:  

• Directly used in the reconstruction of charged hadrons, electrons, and 
muons 

• Needed to distinguish charged and neutral hadrons as well as electrons from 
photons 

• Crucial ingredient for higher level objects like (b-tagged) jets or taus, missing 
transverse momentum (MET) 

• Association of tracks to vertices needed to distinguish particles from the hard 
interaction and pileup vertices 

• Secondary vertices crucial to track the decay chains of particles 
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… and crucial for analysis

• Good resolution and high efficiency are crucial 
for physics analyses 

• Example: Charge mismeasurements of electrons, 
can happen through various effects 

• Small curvature for high pT electrons 

• Photon conversions from bremsstrahlung 

• Good tracking and sensible track selections can 
substantially reduce backgrounds arising from 
this effect

K. Salyer 27 September 2023
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1. Nonprompt/fake background

• Mostly ttbar events

• Enters SR due to leptonic decays of b quarks or misidentified quarks as leptons

• Reduce with isolation variables

• Data-driven estimation method


2. Charge flip background

• Mostly DY, ttbar events

• Enters SR due to mis-IDing electron charge

• Reduce with mass and conversion vetos, 3 q consistency

• Data-driven estimation method


3. Rare SM SS background

• Mostly ttW and diboson events

• SM events which produce real SS pair

• Reduce with Z mass vetos

• Estimate from simulation

semileptonic 
b decay

misidentified lepton
electron charge flip
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Tracking is challenging

• On average, 30 charged particles within the Tracker acceptance per proton-
proton collision and ≈ 25-60 interactions per event → O(1000) charged particles 
per event are needed to be reconstructed

Tracker (Pixel & Strip)
Muon (hits in Muon stations)



• Position information from finely segmented silicon sensors: 

➡ Record the path of charged particles 

➡ Measure momentum from bending radius in the 3.8 T magnetic field 

➡ Reconstruct primary and secondary vertices 

• Requirements: 

• High resolution & low occupancy  
to resolve and isolate individual  
tracks and reconstruct vertices 

• Finer granularity close to the  
interaction point due to high  
particle density 

• High rate capability for fast  
charge collection and readout  
electronics for expected  
high rates 

• Low material budget to minimize multiple scattering effects 

• Radiation hardness for operation in the area with highest particle flux
8

Tracker 15 hits per track on average 

1-2% @100 GeV 

10-20 µm @10-100 GeV

σ(pT)/pT ∼
σ(IP) ∼

two or more measurements per layer
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Material budget
• Most of the services are located in the 

barrel-endcap transition region 

• Amount of material crossed by a 
primary track increases due to 
geometrical effect as l = h/sin(θ)

regions of concentration of supporting services
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Silicon strips
• O(10) million strips 

• O(200) m2 of sensors 

• Hit resolution: (10,40)x(230,530) µm 

• Occupancy: 1-3% 

• Coverage up to |η| < 2.5 

• 12 hits per track on average

• Sub detectors: 

• Inner Barrel (TIB): 4 

• Inner Disks (TID): 3 (x2) 

• Outer Barrel (TOB): 6 

• Endcap (TEC): 9 (x2) 

thick sensors 500 µm

thin sensors 300 µm
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Silicon pixels
• 127 million of 100x150 µm2 pixels 

• Hit resolution: 10x(20,40) µm 

• Occupancy: 0.1% 

• Layer position [cm] 
BPix: 2.9, 6.8, 10.9, 16.0 
FPix: 29.1, 39.6, 51.6  

• Coverage up to |η| < 2.5 (even 3.0) 

• 4 hits per track on average 

• High segmentation with high quality  
seeds for offline tracking

BPix
FPix

• Since 2017, one additional tracking point in 
both barrel and forward regions → 4-hit seeds 
and lower fake rate (fake track = track not 
associated with a charged particle) 

• Smaller radius of the innermost pixel layer → 
closer to the interaction point to improve 
tracking and vertexing performances 

• Reduced material budget → reduce multiple 
scattering

outer rings

inner rings
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Lorentz drift
• Deflection of the drifting charge carriers 

• Strongly depends on irradiation (bulk damage 
and annealing), charge carrier mobility, etc.  

• Operation under specific temperature 

• Alignment procedure to correct for the effect

NIM A1037 (2022) 166795
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Track reconstruction
➡ Seeding: 

start with track candidates and calculate 
initial trajectory parameters and their 
uncertainties 

➡ Building (pattern recognition): 
propagate track candidates to find new 
compatible hits and update track parameters 

➡ Fitting: 
best estimate of track parameters for a smooth 
trajectory using combination of associated hits 

➡ Selection: 
assign quality flags based on the  of the fit 
and the track compatibility with interaction 
region useful for rejection of fake tracks

χ2



arXiv:2304.05853

CMS-CR-2014-345
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Seeding

• Each interaction has its specific seeding setup 

• Can reconstruct both triplets and quadruplets (and doublet for recovery) 

• Triplets allow low-pT tracks recovery but are more polluted by fakes 

• For the outer Tracker seeds, the triplets are built via doublet propagation to a third 
compatible layer
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Iterative tracking
• Track reconstruction is an iterative procedure 

➡ Reconstruct high-quality tracks 

➡ Remove the hits associated with high-quality tracks from the hit collection 

➡ Use remaining hits to reconstruct other tracks

All hits

High-quality tracks Second track collection

Pruned hits

Final tracks

…
…

• Iterations 

➡ Initial: high-pT quadruplets with high precision pixel hits compatible with 
the beamspot region 

➡ Triplets: recover acceptance at low pT and displacement 

➡ Strips: use seeds from strips to find tracks detached from the primary vertex 
and those in special phase space regions
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Iterative tracking
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Track selection
JIN

ST 9 (2014) P10009

• Significantly reduce fake rate with a set of track quality requirements  
(Loose, Tight, HighPurity) 

• Use the reconstructed variables: 

➡ Number of layers with hits 

➡ Goodness of track fitting ( ) 

➡ Compatibility with primary interaction vertex (including pileup vertices) 

• Selected tracks from each of the iterations are merged into one collection 

• The generalTrack collection contains Loose tracks 

• The HighPurity tracks are typically used in physics analysis

χ2/Ndof
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Momentum resolution
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•  resolution: 

➡ 3-4% at low  because of multiple scattering 

➡ Reaching 1.5% at high  for ≈ 10 GeV tracks 

➡ Degradation of resolution at high  due to less bending in magnetic field 

➡ Best resolution for central tracks
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Impact parameter resolution
• Resolution reaches ≈ 100 µm for central tracks 

• Degrades for forward tracks to up to ≈ 350 µm (> 500 µm) for 
transverse (longitudinal) impact parameters

C
M

S-D
P-2017-015
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Trajectory parametrization
• A helical trajectory can be expressed by five parameters, but the 

parametrization is not unique 

• Given one parametrization, we can re-write the same trajectory using 
another parametrization

• Signed radius of curvature [cm]: proportional to 
particle’s charge divided by the track’s  [GeV] 

• Angle of trajectory at a given point on the helix in 
the plane transverse to the beamline ( ) 

• Angle of trajectory at a given point on the helix 
along the beamline ( ), also expressed as 

 

• Impact parameter relative to some reference point 
(e.g. beamspot or primary vertex) in the plane 
transverse to the beamline (dxy) 

• Impact parameter in the plane along the beamline 
(dz)

pT

φ

θ
η = − ln(tan(θ/2))
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Vertexing
• Reconstruction and correct identification of the vertex of 

the hard interaction in event is of critical importance to 
correctly select final-state objects 

• We also need to reconstruct as many pileup vertices as 
possible to allow an efficient pileup suppression with 
PUPPI or Charge Hadron Subtraction (CHS) algorithms 

• The vertexing algorithm selects good tracks originating 
from the interaction region around the beamspot and 
clusters them according to the z coordinate of their point of 
closest approach (PCA) to the center of the beamspot 

• When we cluster tracks into vertices, at the same time we 
want to resolve nearby vertices to separate the primary 
interaction from pileup vertices and avoid vertex merging 

• At the same time, we should avoid splitting a genuine 
vertex in two!
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Gap clustering algorithms
• A large number of algorithms are available to cluster tracks into vertices (K-

means, Deterministic Annealing, etc.) 

• Let us consider a simple gap clustering algorithm used at HLT as 
DivisiveVertexFinder: 

➡ Start by clustering tracks, which are sorted in z position 

➡Consider all tracks to be the part of the same vertex 

➡When any two neighboring tracks are having a gap exceeding a given 
threshold (e.g. 5 mm), the vertex is split 

• The algorithm is simple and fast but not optimal at high pileup

z
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Deterministic Annealing
• Offline vertex clustering uses 

Deterministic Annealing algorithm 

• Inspired by thermodynamics: find the 
global minimum with many degrees 
of freedom analogous to a physical 
system approaching a state of 
minimal energy through a series of 
gradual temperature reductions

Patt. R
ec. Lett. 11 (1990) 589

• All tracks from one vertex (high temperature) 

• Split vertices below a (low) critical 
temperature 

• Iterative procedure to balance between vertex 
merging and splitting
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Deterministic Annealing

• Recently improved for HL-
LHC by clustering tracks in 
blocks, also ported to 
heterogenous architectures 

• Apply DA to the blocks with 
512 tracks each, clustered 
in z 

• Better efficiency and timing 
performance

CMS-DP-2022-052
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Vertex fitting
• With the tracks clustered in vertices, the 3D position of the vertex can be 

fitted  

• A good candidate for a vertex fitter is a Kalman Filter - the least-squares 
estimator, which minimizes the sum of the squared standardized distances of 
all tracks from the vertex position 

• Can be used iteratively, refitting the tracks with taking into account the vertex 
position 

• Does not properly handle outlier tracks, leading to bad fits if tracks are 
included in the vertex to which they do not belong, or rejected in the opposite 
case 

• A better approach: Adaptive Vertex Fitter (AVF)  
used in CMS offline reconstruction 

➡ Each track is assigned a weight representing  
the probability that it belongs to the vertex 

➡ This allows to down-weigh the outlier tracks,  
making the vertex fit much more robust

C
M

S-N
O

TE-2007-008

K+K−μ+μ−
robust lifetime 
reconstruction
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Vertexing performance
• Vertex reconstruction efficiency 

increased significantly after the Phase-I 
pixel detector upgrade 

• ≈ 85% at low pileup, decreasing with 
the number of interactions (when 
computed for all pileup vertices) 

• Much higher efficiency for the hard-
interaction vertex 

• A linear relation between the number of 
reconstructed vertices and the number of 
pileup interactions 

• The efficiency loss at high pileup 
attributed to the vertex-merging effects Simulated interactions
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Vertexing performance
• Merging of vertices starts for distances closer than 0.3 mm 

• Vertices closer than 0.1 mm will be merged into a single reconstructed vertex 

• Future: CMS Phase-2 timing layer will help resolve overlapping vertices
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Tracks in CMS data formats
• CMS provides several different data formats for physics analysis 

• In general, we want to reduce as much information as possible to save storage space 
and speed up event processing 

• However, this means significant compromises in the accessibility of « low-level » 
information, such as individual tracks 

• Data formats: 

➡ AOD: Save all reconstructed objects and drop only low-level detector information. 
All tracks passing loose selection requirements are saved in the generalTracks 
collection. Note that the use of this format is to be avoided if at all possible as it can 
be tricky to access it with only a few copies available for analysis access. 

➡ MiniAOD: Stripped down version of AOD. Keeps only high-level objects necessary 
for most analyses. No single collection of all tracks is kept. Tracks associated with PF 
candidates are available through packedPFCandidate object. Tracks not associated 
with PF candidates are stored in the lostTracks collection if they have pT > 0.95 GeV 
or if they are associated with a secondary vertex or a  or  candidate. 

➡ NanoAOD: Store only the most relevant information for analysis as flat tuples. Track 
information is stored only for some isolated tracks. NanoAOD content 
documentation

K Λ
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Vertices in CMS data formats
• Similar strategy as used for saving track information. 

• Data formats: 

➡ AOD: The offlinePrimaryVertices collection contains all 
reconstructed vertices. 

➡ MiniAOD: To save space, the offlineSlimmedPrimaryVertices 
drop the references from the vertices to the associated tracks and 
the numerical precision of vertex parameters is reduced. 

➡ NanoAOD: Basic information about the main primary vertex is 
available, as well as the number of additional PVs. Some 
information about secondary vertices is also available. 
NanoAOD content documentation
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Tag & Probe method
➡ Identify similar objects in data and MC to 

validate MC predictions  

➡ Use known resonances decaying to two 
muons, produced copiously and measured 
with high precision 

➡ Define a tag muon reconstructed by both 
Tracker and the Muon system with tight 
requirements 

➡ Define a probe muon reconstructed by the 
Muon system passing loose selection 

➡ Select a good dimuon candidate with 
additional kinematic requirements 

➡ Check if a probe muon can be matched to 
at least one track in the Tracker in some 
cone around the direction of the muon 

➡ Calculate the track reconstruction 
efficiency
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Tag & Probe method (cont.)

• Background events with muons coming not from the resonance can bias the measurement 

➡ Perform a simultaneous fit using signal and background templates to data 

➡ Subtract the fitted number of background events from data observation 

➡ Measure efficiency in data 

➡ Calculate the ratio between the measured efficiencies for signal muons in data and MC

CMS-DP-2022-046
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Additional information
• Technical information 

➡ Tracking performance in Run 1, JINST 9 (2014) P10009 

➡ Track reconstruction with mkFit in Run3, CMS-DP-2022-018 

➡ SW guide documentation: TrackReco, VertexReco 

➡ Tracking Training Day, agenda (2019) 

➡ Tracker Training Days, agenda (2023) 

➡ Pattern Recognition, Tracking and Vertex Reconstruction in 
Particle Detectors, R. Frühwirth and A. Strandlie 

• Contact information 

➡ Tracking POG TWiki 

➡ CMS Talk forum
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The exercise
• Learn how to: 

➡ Extract basic track parameters 

➡ Select tracks for analysis using track quality cuts 

➡ Reconstruct invariant masses from tracks 

➡ Extract basic parameters for primary vertices 

➡ Reconstruct secondary vertices and composite particles 

➡ Compute track reconstruction efficiency with Tag & Probe method 

• Useful links: 

➡ Instructions for the exercise



BACKUP



Track reconstruction: 
overview
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Local Tracker reconstruction
➡ Pixel and strip signals are clustered into « hits » 

➡ Determine a « coarse » position and corresponding error 
matrix of each hit 
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Trajectory seeding
➡ Initial estimate of trajectory parameters from a small subset 

of measurements, i.e. the hits on the seeding layers of the 
detector 

➡ Build seeds in external layers in next iterations 

➡ TrajectorySeed
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Trajectory building
➡ Iteratively collect all hits originating from the same 

charged particle 

➡ TrackCandidate



39

Trajectory fitting
➡ Estimation of the final track parameters from the 

KalmanFilter+Smoother fit using the full set of hits 
associated to the same charged particle 

➡ reco::Track
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Track filtering
➡ Remove fake or badly reconstructed tracks by using a 

BDT-based selection trained for each iteration 

➡ reco::Track (reduced)



Seeding
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Derivation of seeds

• Pattern recognition needs an initial estimate of the track parameters 
as a starting point 

• Can be derived from a small number of hits in a subset of detectors 

• The choice of layers to look for seeds is the main difference between 
tracking iterations 

• Best initial seeds can be derived from pixel hits due to their excellent 
spatial resolution 

• Hits from the outer Tracker and the Muon system can also be 
included
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Cellular Automaton
• Cellular Automaton (CA) is a tracking algorithm designed for parallel 

architectures  

• Requires a list of layers and their pairings: 

➡ A graph of all possible connections between layers is created 

➡ Doublets (or Cells) are created for each pair of layers, compatible with a 
region hypothesis 

➡ Fast computation of the compatibility between two connected cells 

➡ No knowledge of the world outside adjacent neighboring cells required - 
easy to parallelize
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Cells

• Build interconnections among seeding layers 

• Hit doublets for each layer pair can be computed 
independently in separate threads
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R-z plane compatibility

• The compatibility between two cells is 
checked only if they share one hit 

➡ AB and BC share hit B 

• In the R-z plane require the alignment of 
the two cells 

➡ There is maximum value of  that 
depends on the minimum value of the 
momentum range that we would like to 
explore

θ
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x-y plane compatibility

• In the transverse plane, the 
intersection between the circle passing 
through the hits forming the two cells 
and the beamspot is checked 

➡ They intersect if the distance between 
the centers d(C, C’) satisfies:  
r’-r < d(C, C’) < r’+r 

➡ Since it is an out-in propagation, a 
tolerance is added to the beamspot 
radius (in red)  

• One could also ask for a minimum 
value of transverse momentum and 
reject low values of r’ 
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Evolution

• If two cells satisfy all compatibility requirements, they become neighbors 
with a state 0 

• In the evolution stage, their state increases in discrete generations if there is 
an outer neighbor with the same state 

• At the end of the evolution stage, the state of the cells will contain the 
information about the length 

• If one is interested in quadruplets, there will be one starting from a state 2 
cell, pentuplets state 3, etc.



Trajectory building & 
fitting
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Kalman Filter
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Kalman Filter in HEP

• Expectation: particle’s trajectory can 
be described by a single helix 

• Reality:  
- the B-field is not uniform 
- the processes of scattering and 
energy loss introduce additional 
stochastic effects 

➡ Trajectory is a helix only 
locally 

➡ Use Kalman Filter (KF) to 
account for these effects with 
and preserve a locally smooth 
trajectory
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Kalman Filter in HEP

• Pioneered by P. Billoir and R. Frühwirth 

• Progressive least-square estimation 

• Equivalent to  fit if run with a smoother 

• Start with track parameters and 
covariances to measurement surface and 
create predicted parameters, i.e. 
« predicted » state 

• Combine predicted parameters with 
measurement to updated parameters, i.e. 
« filtered » state

χ2

NIM A 262 (1987) 444 NIM A 294 (1990) 219
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Kalman Filter for tracking

• The KF can be seen as an iterative 
repetition of the same logic unit 

• After updating with the hit 
measurement, the state at layer N 
has smaller uncertainty than at 
layer N-1 

• Reality: smeared by energy loss, 
multiple scattering, etc.
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Defining trajectory

• Collect additional detector 
layers using initial estimate 
of the track parameters 
from seeding 

• Form a complete track 
using combinatorial KF 
(CKF); integrates pattern 
recognition and track fitting 

• Most time consuming step - 
requires branching with 
potentially more than one 
track candidate per seed 

• Final fit with a KF and a 
smoother
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CkfTrajectoryBuilder
• Performs the pattern recognition (trajectory building) using a KF approach 

➡ Starts from the seed layer and uses the seed parameters as the initial state 

➡ Uses the navigation to find compatible detector layers that the trajectory is 
expected to intersect next 

➡ Uses the propagator to go to the surface of those layers 

➡ Searches for compatible measurements (hits) on these detectors, taking 
into account the angle of the trajectory with respect to the detector surface 

➡ Updates the trajectory state taking into account the added hit 

• This is repeated until some stopping criteria are reached: no more detector layers, 
too many layers without compatible layers, etc. 

• If multiple compatible hits are found on one layer, the trajectory branches are 
built 

• Have to make sure to limit these branches, only retaining a certain number of 
trajectories at each step
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Smoothening / Fitting
• The TrackCandidates produced in the trajectory building do not necessarily have the 

optimal track parameters yet (they can for instance be biased by constraints on the 
seeds from the seed building step) 

• To find the best fit parameters, a final fit uses a KF and a smoother: 

➡ Start from the seed layer and use the seed parameters as the initial state 

➡ A new initial track state is obtained from the innermost hits of the track 

➡ It is then propagated outwards, updating the state with each hit sequentially 

➡ The final track state at the outermost hit is then used as the initial state for 
another round of KF going outside-in 

➡ The track state at each surface can then be obtained as the weighted average 
of the two trajectories, making maximal use of the available information 

• During this procedure, the hit position uncertainty (and the hit position itself in the 
pixel detector) are updated using the track parameters 

• An outlier hit rejection is performed based on  criterium, triggering a new filtering 
and smoothing if a hit is removed

χ2
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GSF tracking
• KF for track reconstruction has its limitations: 

➡ It’s a linear least-squares estimator and is optimal 
if all relevant PDFs are Gaussian 

➡ It uses single-Gaussian distributions to model the 
probability of energy losses in the detector 
material when propagating from layer to layer 

➡ Not a good choice for electrons, which have a 
high probability for large non-Gaussian energy 
losses due to bremsstrahlung  

• For electrons we use a non-linear extension of the KF, the 
Gaussian Sum Filter (GSF): 

➡ Approximates the energy loss distribution with a 
mixture of several Gaussians, based on the Bethe-
Heitler model 

➡ This improved modeling of radiative energy losses 
leads to an improved resolution for track 
parameters



Track selection
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Track selection

• Tracks are selected based on their hit pattern (number of hit in the pixels 
and strips, number of lost hits, number of 3D hits, etc.), impact parameters, 

 of the fit, etc. 

• Optimal cuts obtained for each track iteration using a BDT 

• Selection is then applied cut-based using the MultiTrackSelector 

• Three working points: Loose, Tight, HighPurity 

• Only high-purity tracks are actually used in most cases

χ2



Iterative tracking
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Iterative tracking
• In general, high-momentum primary tracks are easy to reconstruct and it does 

not take too much time 

➡ Primary vertex and beamspot constraint 

➡ High-precision pixel hits give high-quality seeds 

➡ Less multiple scattering, smaller search window 

• Relaxing these requirements increases the combinatorics 

• Still very useful (yet difficult) to reconstruct low-pT, primary tracks missing a 
pixel hit, displaced tracks 

➡ Conversions, nuclear interactions, heavy-flavor decays 

➡ Tracks crossing inefficient parts of the pixel detector 

• Iterative tracking aims at reducing the combinatorial problem so that 
problematic tracks can also be reconstructed with the CPU time budget 

• The idea is to run track reconstruction several times, and each time hits that 
are used by tracks from previous iterations are masked



61

Iterative tracking
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Iterative tracking
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Iterative tracking sequence
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Performance of the iterative tracking

• First iteration is most efficient in reducing the number of hits 

• After all iterations, more than half of the hits are still not associated to tracks 

• The iterative tracking approach reduces the combinatorics but tracking is still a 
big challenge
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• Tracking takes most of the computing time of CMS event reconstruction 

• Timing grows with pileup, especially above 70 

• Most of the time is spent during pattern recognition (building) 

• Steps not using pixel quad&triplets are those taking most of the time (tobTec, 
pixelLess, pixelPair)

Timing



Geometry
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Layout modeling
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Detector geometry
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Coverage check
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Material



Navigation
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Trajectory builder

Input: trajectory state on the Nth layer, 
TrajectoryStateOnSurface
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Trajectory builder

Input: trajectory state on the Nth layer 
→ find next compatible layer (or layers)
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Trajectory builder

Input: trajectory state on the Nth layer 
→ find next compatible layer (or layers) 

→ find list of compatible detectors on layers N+1
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Trajectory builder
Input: trajectory state on the Nth layer 
→ find next compatible layer (or layers) 

→ find list of compatible detectors on layers N+1 
→ find list of compatible hits on compatible detectors 

→ create new trajectory with updated state for each compatible hit

Output: two new states will be projected onto the next Tracker layer
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Standard vs grouped builders
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Standard vs grouped builders



Propagation
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Magnetic field

Full and « parabolic » (fast) approximations 
using 2D/3D fits
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Propagators

• Propagators are needed to extrapolate a trajectory from one 
surface (or space point) to another, taking into account the 
magnetic field and material effects including energy losses 

• Tracking generally makes use of three propagators: 

➡ AnalyticalPropagator 

➡ PropagatorWithMaterial 

➡ RungeKuttaPropagator
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Propagators
• AnalyticalPropagator: 

➡ Calculates analytically the intersection between a helix and detector 
plane or cylinder 

• PropagatorWithMaterial: 

➡ Builds on the AnalyticalPropagator and adds energy losses in 
material (Bethe-Bloch/Bethe-Heitler) and accounts for multiple 
scattering 

➡ Used for most steps of the track reconstruction, except the final fit 

• RungeKutta: 

➡ Uses Runge-Kutta methods for iteratively solving first order 
differential equations (such as particle in a B-field) 

➡ Can take into account the non-uniformities in the magnetic field 

➡ Used in the final track fit 

➡ More precise but slower
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Additional propagators

• SteppingHelix: 

➡ Designed for volumes containing lots of material 

➡ Used in the muon reconstruction to propagate through the 
calorimeters and the magnet yoke 

• GEANE: 

➡ Propagator and fitted developed for GEANT3 in the early 90s 

➡ Used in several previous experiments 

➡ Very precise but very CPU-intensive



Links
NanoAOD content documentation: https://cms-nanoaod-integration.web.cern.ch/autoDoc/ 

Tracking performance with in Run 1: https://arxiv.org/abs/1405.6569 

Track reconstruction with mkFit in Run3: https://cds.cern.ch/record/2814000 

SW guide documentation: https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideTrackReco,  
                                                 https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideVertexReco 

Tracking Training Day 2019: https://indico.cern.ch/event/849864 

Tracker Training Day 2023: https://indico.cern.ch/event/1238081 

Pattern Recognition, Tracking and Vertex Reconstruction in Particle Detectors (R. Frühwirth & A. Strandlie) 
https://link.springer.com/book/10.1007/978-3-030-65771-0 

Tracking POG webpage: https://cms-tracking.docs.cern.ch/ 

Tracking POG CMS Talk:  https://cms-talk.web.cern.ch/c/physics/trk/148


