
Jan 13-17, 2025

Tracking & Vertexing

Emery
Nibigira

Leonardo
Giannini

Tetiana
Mazurets

Hichem
Bouchamaoui

Ray
Wynne

Aidan
Grummer

slides thankfully borrowed and updated from Kirill Skovpen

CMS Data Analysis School 2025

Fermilab

2

Tracking is rather important …

➡ Reconstruct tracks

• Find single particles

• Measure momenta

• Identify particles

➡ Reconstruct vertices

3

4

Menu for today

➡ Get to know the CMS Silicon Tracker and how the tracks
and vertices are reconstructed

➡ Learn how to assess track information for analysis
purposes in different data formats

➡ Use track information to understand the particle
interactions in an event

➡ Use track information to measure the tracking efficiency

5

Tracking is everything
• The reconstruction of charged particle tracks and vertices is fundamental to the

reconstruction of every type of physics event in CMS:

• Directly used in the reconstruction of charged hadrons, electrons, and
muons

• Needed to distinguish charged and neutral hadrons as well as electrons from
photons

• Crucial ingredient for higher level objects like (b-tagged) jets or taus, missing
transverse momentum (MET)

• Association of tracks to vertices needed to distinguish particles from the hard
interaction and pileup vertices

• Secondary vertices crucial to track the decay chains of particles

6

… and crucial for analysis

• Good resolution and high efficiency are crucial
for physics analyses

• Example: Charge mismeasurements of electrons,
can happen through various effects

• Small curvature for high pT electrons

• Photon conversions from bremsstrahlung

• Good tracking and sensible track selections can
substantially reduce backgrounds arising from
this effect

K. Salyer 27 September 2023

q

W±

⌫

`±

q

Z
`±

`⌥

1

Backgrounds

4

1. Nonprompt/fake background

• Mostly ttbar events

• Enters SR due to leptonic decays of b quarks or misidentified quarks as leptons

• Reduce with isolation variables

• Data-driven estimation method

2. Charge flip background

• Mostly DY, ttbar events

• Enters SR due to mis-IDing electron charge

• Reduce with mass and conversion vetos, 3 q consistency

• Data-driven estimation method

3. Rare SM SS background

• Mostly ttW and diboson events

• SM events which produce real SS pair

• Reduce with Z mass vetos

• Estimate from simulation

semileptonic
b decay

misidentified lepton
electron charge flip

7

Tracking is challenging

• On average, 30 charged particles within the Tracker acceptance per proton-
proton collision and ≈ 25-60 interactions per event → O(1000) charged particles
per event are needed to be reconstructed

Tracker (Pixel & Strip)
Muon (hits in Muon stations)

• Position information from finely segmented silicon sensors:

➡ Record the path of charged particles

➡ Measure momentum from bending radius in the 3.8 T magnetic field

➡ Reconstruct primary and secondary vertices

• Requirements:

• High resolution & low occupancy
to resolve and isolate individual
tracks and reconstruct vertices

• Finer granularity close to the
interaction point due to high
particle density

• High rate capability for fast
charge collection and readout
electronics for expected
high rates

• Low material budget to minimize multiple scattering effects

• Radiation hardness for operation in the area with highest particle flux
8

Tracker 15 hits per track on average

1-2% @100 GeV

10-20 µm @10-100 GeV

σ(pT)/pT ∼
σ(IP) ∼

two or more measurements per layer

9

Material budget
• Most of the services are located in the

barrel-endcap transition region

• Amount of material crossed by a
primary track increases due to
geometrical effect as l = h/sin(θ)

regions of concentration of supporting services

10

Silicon strips
• O(10) million strips

• O(200) m2 of sensors

• Hit resolution: (10,40)x(230,530) µm

• Occupancy: 1-3%

• Coverage up to |η| < 2.5

• 12 hits per track on average

• Sub detectors:

• Inner Barrel (TIB): 4

• Inner Disks (TID): 3 (x2)

• Outer Barrel (TOB): 6

• Endcap (TEC): 9 (x2)

thick sensors 500 µm

thin sensors 300 µm

11

Silicon pixels
• 127 million of 100x150 µm2 pixels

• Hit resolution: 10x(20,40) µm

• Occupancy: 0.1%

• Layer position [cm]
BPix: 2.9, 6.8, 10.9, 16.0
FPix: 29.1, 39.6, 51.6

• Coverage up to |η| < 2.5 (even 3.0)

• 4 hits per track on average

• High segmentation with high quality
seeds for offline tracking

BPix
FPix

• Since 2017, one additional tracking point in
both barrel and forward regions → 4-hit seeds
and lower fake rate (fake track = track not
associated with a charged particle)

• Smaller radius of the innermost pixel layer →
closer to the interaction point to improve
tracking and vertexing performances

• Reduced material budget → reduce multiple
scattering

outer rings

inner rings

12

Lorentz drift
• Deflection of the drifting charge carriers

• Strongly depends on irradiation (bulk damage
and annealing), charge carrier mobility, etc.

• Operation under specific temperature

• Alignment procedure to correct for the effect

NIM A1037 (2022) 166795

13

Track reconstruction
➡ Seeding:

start with track candidates and calculate
initial trajectory parameters and their
uncertainties

➡ Building (pattern recognition):
propagate track candidates to find new
compatible hits and update track parameters

➡ Fitting:
best estimate of track parameters for a smooth
trajectory using combination of associated hits

➡ Selection:
assign quality flags based on the of the fit
and the track compatibility with interaction
region useful for rejection of fake tracks

χ2

arXiv:2304.05853

CMS-CR-2014-345

14

Seeding

• Each interaction has its specific seeding setup

• Can reconstruct both triplets and quadruplets (and doublet for recovery)

• Triplets allow low-pT tracks recovery but are more polluted by fakes

• For the outer Tracker seeds, the triplets are built via doublet propagation to a third
compatible layer

15

Iterative tracking
• Track reconstruction is an iterative procedure

➡ Reconstruct high-quality tracks

➡ Remove the hits associated with high-quality tracks from the hit collection

➡ Use remaining hits to reconstruct other tracks

All hits

High-quality tracks Second track collection

Pruned hits

Final tracks

…
…

• Iterations

➡ Initial: high-pT quadruplets with high precision pixel hits compatible with
the beamspot region

➡ Triplets: recover acceptance at low pT and displacement

➡ Strips: use seeds from strips to find tracks detached from the primary vertex
and those in special phase space regions

16

Iterative tracking

 (GeV)
T

Simulated track p
1−10 1 10 210

Tr
ac

ki
ng

 e
ffi

ci
en

cy

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Initial
+HighPtTriplet
+LowPtQuad
+LowPtTriplet
+DetachedQuad
+DetachedTriplet
+MixedTriplet
+PixelLess
+TobTec
+JetCore
+Muon inside-out
+Muon outside-in

 13 TeVCMS Simulation preliminary

=35)〉PU〈 event tracks (tt
 < 3.5 cm0d| < 2.5, η|

Sim. track prod. vertex radius (cm)
0 10 20 30 40 50 60

Tr
ac

ki
ng

 e
ffi

ci
en

cy
0

0.2

0.4

0.6

0.8

1

1.2
=35)〉PU〈 event tracks (tt

 > 0.9 GeV,
T

p
| < 2.5η|

Initial
+HighPtTriplet
+LowPtQuad
+LowPtTriplet
+DetachedQuad
+DetachedTriplet
+MixedTriplet
+PixelLess
+TobTec
+JetCore
+Muon inside-out
+Muon outside-in

 13 TeVCMS Simulation preliminary

NIM A1037 (2022) 166795

17

Track selection
JIN

ST 9 (2014) P10009

• Significantly reduce fake rate with a set of track quality requirements
(Loose, Tight, HighPurity)

• Use the reconstructed variables:

➡ Number of layers with hits

➡ Goodness of track fitting ()

➡ Compatibility with primary interaction vertex (including pileup vertices)

• Selected tracks from each of the iterations are merged into one collection

• The generalTrack collection contains Loose tracks

• The HighPurity tracks are typically used in physics analysis

χ2/Ndof

18

Momentum resolution

ηSimulated track
3− 2− 1− 0 1 2 3

T
 re

so
lu

tio
n

/ p
Tp

0
0.005

0.01
0.015
0.02

0.025
0.03

0.035
0.04

0.045
0.05

2016

2017

 13 TeVCMS Simulation preliminary

=35)〉PU〈 event tracks (tt

 (GeV)
T

Simulated track p
1−10 1 10 210

T
 re

so
lu

tio
n

/ p
Tp

0
0.005

0.01
0.015
0.02

0.025
0.03

0.035
0.04

0.045
0.05

2016

2017

 13 TeVCMS Simulation preliminary

=35)〉PU〈 event tracks (tt

• resolution:

➡ 3-4% at low because of multiple scattering

➡ Reaching 1.5% at high for ≈ 10 GeV tracks

➡ Degradation of resolution at high due to less bending in magnetic field

➡ Best resolution for central tracks

pT
pT

pT
pT

C
M

S-D
P-2017-015

19

Impact parameter resolution
• Resolution reaches ≈ 100 µm for central tracks

• Degrades for forward tracks to up to ≈ 350 µm (> 500 µm) for
transverse (longitudinal) impact parameters

C
M

S-D
P-2017-015

ηSimulated track
3− 2− 1− 0 1 2 3

m
)

µ
 re

so
lu

tio
n

(
0d

0
100
200
300
400
500
600
700
800
900

1000

2016

2017

 13 TeVCMS Simulation preliminary

=35)〉PU〈 event tracks (tt

ηSimulated track
3− 2− 1− 0 1 2 3

m
)

µ
 re

so
lu

tio
n

(
zd

0
100
200
300
400
500
600
700
800
900

1000

2016

2017

 13 TeVCMS Simulation preliminary

=35)〉PU〈 event tracks (tt

20

Trajectory parametrization
• A helical trajectory can be expressed by five parameters, but the

parametrization is not unique

• Given one parametrization, we can re-write the same trajectory using
another parametrization

• Signed radius of curvature [cm]: proportional to
particle’s charge divided by the track’s [GeV]

• Angle of trajectory at a given point on the helix in
the plane transverse to the beamline ()

• Angle of trajectory at a given point on the helix
along the beamline (), also expressed as

• Impact parameter relative to some reference point
(e.g. beamspot or primary vertex) in the plane
transverse to the beamline (dxy)

• Impact parameter in the plane along the beamline
(dz)

pT

φ

θ
η = − ln(tan(θ/2))

21

Vertexing
• Reconstruction and correct identification of the vertex of

the hard interaction in event is of critical importance to
correctly select final-state objects

• We also need to reconstruct as many pileup vertices as
possible to allow an efficient pileup suppression with
PUPPI or Charge Hadron Subtraction (CHS) algorithms

• The vertexing algorithm selects good tracks originating
from the interaction region around the beamspot and
clusters them according to the z coordinate of their point of
closest approach (PCA) to the center of the beamspot

• When we cluster tracks into vertices, at the same time we
want to resolve nearby vertices to separate the primary
interaction from pileup vertices and avoid vertex merging

• At the same time, we should avoid splitting a genuine
vertex in two!

22

Gap clustering algorithms
• A large number of algorithms are available to cluster tracks into vertices (K-

means, Deterministic Annealing, etc.)

• Let us consider a simple gap clustering algorithm used at HLT as
DivisiveVertexFinder:

➡ Start by clustering tracks, which are sorted in z position

➡Consider all tracks to be the part of the same vertex

➡When any two neighboring tracks are having a gap exceeding a given
threshold (e.g. 5 mm), the vertex is split

• The algorithm is simple and fast but not optimal at high pileup

z

23

Deterministic Annealing
• Offline vertex clustering uses

Deterministic Annealing algorithm

• Inspired by thermodynamics: find the
global minimum with many degrees
of freedom analogous to a physical
system approaching a state of
minimal energy through a series of
gradual temperature reductions

Patt. R
ec. Lett. 11 (1990) 589

• All tracks from one vertex (high temperature)

• Split vertices below a (low) critical
temperature

• Iterative procedure to balance between vertex
merging and splitting

24

Deterministic Annealing

• Recently improved for HL-
LHC by clustering tracks in
blocks, also ported to
heterogenous architectures

• Apply DA to the blocks with
512 tracks each, clustered
in z

• Better efficiency and timing
performance

CMS-DP-2022-052

25

Vertex fitting
• With the tracks clustered in vertices, the 3D position of the vertex can be

fitted

• A good candidate for a vertex fitter is a Kalman Filter - the least-squares
estimator, which minimizes the sum of the squared standardized distances of
all tracks from the vertex position

• Can be used iteratively, refitting the tracks with taking into account the vertex
position

• Does not properly handle outlier tracks, leading to bad fits if tracks are
included in the vertex to which they do not belong, or rejected in the opposite
case

• A better approach: Adaptive Vertex Fitter (AVF)
used in CMS offline reconstruction

➡ Each track is assigned a weight representing
the probability that it belongs to the vertex

➡ This allows to down-weigh the outlier tracks,
making the vertex fit much more robust

C
M

S-N
O

TE-2007-008

K+K−μ+μ−
robust lifetime
reconstruction

26

Vertexing performance
• Vertex reconstruction efficiency

increased significantly after the Phase-I
pixel detector upgrade

• ≈ 85% at low pileup, decreasing with
the number of interactions (when
computed for all pileup vertices)

• Much higher efficiency for the hard-
interaction vertex

• A linear relation between the number of
reconstructed vertices and the number of
pileup interactions

• The efficiency loss at high pileup
attributed to the vertex-merging effects Simulated interactions

10 20 30 40 50 60 70
Ve

rti
ce

s
10

20

30

40

50

60

70

2016

2017

 13 TeVCMS Simulation preliminary

=35)〉PU〈 events(tt

CMS-DP-2017-015

27

Vertexing performance
• Merging of vertices starts for distances closer than 0.3 mm

• Vertices closer than 0.1 mm will be merged into a single reconstructed vertex

• Future: CMS Phase-2 timing layer will help resolve overlapping vertices

Distance to closest vertex in z (cm)
3−10 2−10 1−10 1

Ve
rte

x
m

er
ge

 ra
te

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

2016

2017

 13 TeVCMS Simulation preliminary

=35)〉PU〈 events(tt

C
M

S-D
P-2017-015

z (cm)
-15 -10 -5 0 5 10

t (
ns

)

-0.4

-0.2

0

0.2

0.4

0.6

Simulated Vertices
3D Reconstructed Vertices
4D Reconstruction Vertices
4D Tracks

CMS-TDR-020

28

Tracks in CMS data formats
• CMS provides several different data formats for physics analysis

• In general, we want to reduce as much information as possible to save storage space
and speed up event processing

• However, this means significant compromises in the accessibility of « low-level »
information, such as individual tracks

• Data formats:

➡ AOD: Save all reconstructed objects and drop only low-level detector information.
All tracks passing loose selection requirements are saved in the generalTracks
collection. Note that the use of this format is to be avoided if at all possible as it can
be tricky to access it with only a few copies available for analysis access.

➡ MiniAOD: Stripped down version of AOD. Keeps only high-level objects necessary
for most analyses. No single collection of all tracks is kept. Tracks associated with PF
candidates are available through packedPFCandidate object. Tracks not associated
with PF candidates are stored in the lostTracks collection if they have pT > 0.95 GeV
or if they are associated with a secondary vertex or a or candidate.

➡ NanoAOD: Store only the most relevant information for analysis as flat tuples. Track
information is stored only for some isolated tracks. NanoAOD content
documentation

K Λ

29

Vertices in CMS data formats
• Similar strategy as used for saving track information.

• Data formats:

➡ AOD: The offlinePrimaryVertices collection contains all
reconstructed vertices.

➡ MiniAOD: To save space, the offlineSlimmedPrimaryVertices
drop the references from the vertices to the associated tracks and
the numerical precision of vertex parameters is reduced.

➡ NanoAOD: Basic information about the main primary vertex is
available, as well as the number of additional PVs. Some
information about secondary vertices is also available.
NanoAOD content documentation

30

Tag & Probe method
➡ Identify similar objects in data and MC to

validate MC predictions

➡ Use known resonances decaying to two
muons, produced copiously and measured
with high precision

➡ Define a tag muon reconstructed by both
Tracker and the Muon system with tight
requirements

➡ Define a probe muon reconstructed by the
Muon system passing loose selection

➡ Select a good dimuon candidate with
additional kinematic requirements

➡ Check if a probe muon can be matched to
at least one track in the Tracker in some
cone around the direction of the muon

➡ Calculate the track reconstruction
efficiency

31

Tag & Probe method (cont.)

• Background events with muons coming not from the resonance can bias the measurement

➡ Perform a simultaneous fit using signal and background templates to data

➡ Subtract the fitted number of background events from data observation

➡ Measure efficiency in data

➡ Calculate the ratio between the measured efficiencies for signal muons in data and MC

CMS-DP-2022-046

32

Additional information
• Technical information

➡ Tracking performance in Run 1, JINST 9 (2014) P10009

➡ Track reconstruction with mkFit in Run3, CMS-DP-2022-018

➡ SW guide documentation: TrackReco, VertexReco

➡ Tracking Training Day, agenda (2019)

➡ Tracker Training Days, agenda (2023)

➡ Pattern Recognition, Tracking and Vertex Reconstruction in
Particle Detectors, R. Frühwirth and A. Strandlie

• Contact information

➡ Tracking POG TWiki

➡ CMS Talk forum

33

The exercise
• Learn how to:

➡ Extract basic track parameters

➡ Select tracks for analysis using track quality cuts

➡ Reconstruct invariant masses from tracks

➡ Extract basic parameters for primary vertices

➡ Reconstruct secondary vertices and composite particles

➡ Compute track reconstruction efficiency with Tag & Probe method

• Useful links:

➡ Instructions for the exercise

BACKUP

Track reconstruction:
overview

36

Local Tracker reconstruction
➡ Pixel and strip signals are clustered into « hits »

➡ Determine a « coarse » position and corresponding error
matrix of each hit

37

Trajectory seeding
➡ Initial estimate of trajectory parameters from a small subset

of measurements, i.e. the hits on the seeding layers of the
detector

➡ Build seeds in external layers in next iterations

➡ TrajectorySeed

38

Trajectory building
➡ Iteratively collect all hits originating from the same

charged particle

➡ TrackCandidate

39

Trajectory fitting
➡ Estimation of the final track parameters from the

KalmanFilter+Smoother fit using the full set of hits
associated to the same charged particle

➡ reco::Track

40

Track filtering
➡ Remove fake or badly reconstructed tracks by using a

BDT-based selection trained for each iteration

➡ reco::Track (reduced)

Seeding

42

Derivation of seeds

• Pattern recognition needs an initial estimate of the track parameters
as a starting point

• Can be derived from a small number of hits in a subset of detectors

• The choice of layers to look for seeds is the main difference between
tracking iterations

• Best initial seeds can be derived from pixel hits due to their excellent
spatial resolution

• Hits from the outer Tracker and the Muon system can also be
included

43

Cellular Automaton
• Cellular Automaton (CA) is a tracking algorithm designed for parallel

architectures

• Requires a list of layers and their pairings:

➡ A graph of all possible connections between layers is created

➡ Doublets (or Cells) are created for each pair of layers, compatible with a
region hypothesis

➡ Fast computation of the compatibility between two connected cells

➡ No knowledge of the world outside adjacent neighboring cells required -
easy to parallelize

44

Cells

• Build interconnections among seeding layers

• Hit doublets for each layer pair can be computed
independently in separate threads

45

R-z plane compatibility

• The compatibility between two cells is
checked only if they share one hit

➡ AB and BC share hit B

• In the R-z plane require the alignment of
the two cells

➡ There is maximum value of that
depends on the minimum value of the
momentum range that we would like to
explore

θ

46

x-y plane compatibility

• In the transverse plane, the
intersection between the circle passing
through the hits forming the two cells
and the beamspot is checked

➡ They intersect if the distance between
the centers d(C, C’) satisfies:
r’-r < d(C, C’) < r’+r

➡ Since it is an out-in propagation, a
tolerance is added to the beamspot
radius (in red)

• One could also ask for a minimum
value of transverse momentum and
reject low values of r’

47

Evolution

• If two cells satisfy all compatibility requirements, they become neighbors
with a state 0

• In the evolution stage, their state increases in discrete generations if there is
an outer neighbor with the same state

• At the end of the evolution stage, the state of the cells will contain the
information about the length

• If one is interested in quadruplets, there will be one starting from a state 2
cell, pentuplets state 3, etc.

Trajectory building &
fitting

49

Kalman Filter

50

Kalman Filter in HEP

• Expectation: particle’s trajectory can
be described by a single helix

• Reality:
- the B-field is not uniform
- the processes of scattering and
energy loss introduce additional
stochastic effects

➡ Trajectory is a helix only
locally

➡ Use Kalman Filter (KF) to
account for these effects with
and preserve a locally smooth
trajectory

51

Kalman Filter in HEP

• Pioneered by P. Billoir and R. Frühwirth

• Progressive least-square estimation

• Equivalent to fit if run with a smoother

• Start with track parameters and
covariances to measurement surface and
create predicted parameters, i.e.
« predicted » state

• Combine predicted parameters with
measurement to updated parameters, i.e.
« filtered » state

χ2

NIM A 262 (1987) 444 NIM A 294 (1990) 219

52

Kalman Filter for tracking

• The KF can be seen as an iterative
repetition of the same logic unit

• After updating with the hit
measurement, the state at layer N
has smaller uncertainty than at
layer N-1

• Reality: smeared by energy loss,
multiple scattering, etc.

53

Defining trajectory

• Collect additional detector
layers using initial estimate
of the track parameters
from seeding

• Form a complete track
using combinatorial KF
(CKF); integrates pattern
recognition and track fitting

• Most time consuming step -
requires branching with
potentially more than one
track candidate per seed

• Final fit with a KF and a
smoother

54

CkfTrajectoryBuilder
• Performs the pattern recognition (trajectory building) using a KF approach

➡ Starts from the seed layer and uses the seed parameters as the initial state

➡ Uses the navigation to find compatible detector layers that the trajectory is
expected to intersect next

➡ Uses the propagator to go to the surface of those layers

➡ Searches for compatible measurements (hits) on these detectors, taking
into account the angle of the trajectory with respect to the detector surface

➡ Updates the trajectory state taking into account the added hit

• This is repeated until some stopping criteria are reached: no more detector layers,
too many layers without compatible layers, etc.

• If multiple compatible hits are found on one layer, the trajectory branches are
built

• Have to make sure to limit these branches, only retaining a certain number of
trajectories at each step

55

Smoothening / Fitting
• The TrackCandidates produced in the trajectory building do not necessarily have the

optimal track parameters yet (they can for instance be biased by constraints on the
seeds from the seed building step)

• To find the best fit parameters, a final fit uses a KF and a smoother:

➡ Start from the seed layer and use the seed parameters as the initial state

➡ A new initial track state is obtained from the innermost hits of the track

➡ It is then propagated outwards, updating the state with each hit sequentially

➡ The final track state at the outermost hit is then used as the initial state for
another round of KF going outside-in

➡ The track state at each surface can then be obtained as the weighted average
of the two trajectories, making maximal use of the available information

• During this procedure, the hit position uncertainty (and the hit position itself in the
pixel detector) are updated using the track parameters

• An outlier hit rejection is performed based on criterium, triggering a new filtering
and smoothing if a hit is removed

χ2

56

GSF tracking
• KF for track reconstruction has its limitations:

➡ It’s a linear least-squares estimator and is optimal
if all relevant PDFs are Gaussian

➡ It uses single-Gaussian distributions to model the
probability of energy losses in the detector
material when propagating from layer to layer

➡ Not a good choice for electrons, which have a
high probability for large non-Gaussian energy
losses due to bremsstrahlung

• For electrons we use a non-linear extension of the KF, the
Gaussian Sum Filter (GSF):

➡ Approximates the energy loss distribution with a
mixture of several Gaussians, based on the Bethe-
Heitler model

➡ This improved modeling of radiative energy losses
leads to an improved resolution for track
parameters

Track selection

58

Track selection

• Tracks are selected based on their hit pattern (number of hit in the pixels
and strips, number of lost hits, number of 3D hits, etc.), impact parameters,

 of the fit, etc.

• Optimal cuts obtained for each track iteration using a BDT

• Selection is then applied cut-based using the MultiTrackSelector

• Three working points: Loose, Tight, HighPurity

• Only high-purity tracks are actually used in most cases

χ2

Iterative tracking

60

Iterative tracking
• In general, high-momentum primary tracks are easy to reconstruct and it does

not take too much time

➡ Primary vertex and beamspot constraint

➡ High-precision pixel hits give high-quality seeds

➡ Less multiple scattering, smaller search window

• Relaxing these requirements increases the combinatorics

• Still very useful (yet difficult) to reconstruct low-pT, primary tracks missing a
pixel hit, displaced tracks

➡ Conversions, nuclear interactions, heavy-flavor decays

➡ Tracks crossing inefficient parts of the pixel detector

• Iterative tracking aims at reducing the combinatorial problem so that
problematic tracks can also be reconstructed with the CPU time budget

• The idea is to run track reconstruction several times, and each time hits that
are used by tracks from previous iterations are masked

61

Iterative tracking

62

Iterative tracking

63

Iterative tracking sequence

64

Performance of the iterative tracking

• First iteration is most efficient in reducing the number of hits

• After all iterations, more than half of the hits are still not associated to tracks

• The iterative tracking approach reduces the combinatorics but tracking is still a
big challenge

65

• Tracking takes most of the computing time of CMS event reconstruction

• Timing grows with pileup, especially above 70

• Most of the time is spent during pattern recognition (building)

• Steps not using pixel quad&triplets are those taking most of the time (tobTec,
pixelLess, pixelPair)

Timing

Geometry

67

Layout modeling

68

Detector geometry

69

Coverage check

70

Material

Navigation

72

Trajectory builder

Input: trajectory state on the Nth layer,
TrajectoryStateOnSurface

73

Trajectory builder

Input: trajectory state on the Nth layer
→ find next compatible layer (or layers)

74

Trajectory builder

Input: trajectory state on the Nth layer
→ find next compatible layer (or layers)

→ find list of compatible detectors on layers N+1

75

Trajectory builder
Input: trajectory state on the Nth layer
→ find next compatible layer (or layers)

→ find list of compatible detectors on layers N+1
→ find list of compatible hits on compatible detectors

→ create new trajectory with updated state for each compatible hit

Output: two new states will be projected onto the next Tracker layer

76

Standard vs grouped builders

77

Standard vs grouped builders

Propagation

79

Magnetic field

Full and « parabolic » (fast) approximations
using 2D/3D fits

80

Propagators

• Propagators are needed to extrapolate a trajectory from one
surface (or space point) to another, taking into account the
magnetic field and material effects including energy losses

• Tracking generally makes use of three propagators:

➡ AnalyticalPropagator

➡ PropagatorWithMaterial

➡ RungeKuttaPropagator

81

Propagators
• AnalyticalPropagator:

➡ Calculates analytically the intersection between a helix and detector
plane or cylinder

• PropagatorWithMaterial:

➡ Builds on the AnalyticalPropagator and adds energy losses in
material (Bethe-Bloch/Bethe-Heitler) and accounts for multiple
scattering

➡ Used for most steps of the track reconstruction, except the final fit

• RungeKutta:

➡ Uses Runge-Kutta methods for iteratively solving first order
differential equations (such as particle in a B-field)

➡ Can take into account the non-uniformities in the magnetic field

➡ Used in the final track fit

➡ More precise but slower

82

Additional propagators

• SteppingHelix:

➡ Designed for volumes containing lots of material

➡ Used in the muon reconstruction to propagate through the
calorimeters and the magnet yoke

• GEANE:

➡ Propagator and fitted developed for GEANT3 in the early 90s

➡ Used in several previous experiments

➡ Very precise but very CPU-intensive

Links
NanoAOD content documentation: https://cms-nanoaod-integration.web.cern.ch/autoDoc/

Tracking performance with in Run 1: https://arxiv.org/abs/1405.6569

Track reconstruction with mkFit in Run3: https://cds.cern.ch/record/2814000

SW guide documentation: https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideTrackReco,
 https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideVertexReco

Tracking Training Day 2019: https://indico.cern.ch/event/849864

Tracker Training Day 2023: https://indico.cern.ch/event/1238081

Pattern Recognition, Tracking and Vertex Reconstruction in Particle Detectors (R. Frühwirth & A. Strandlie)
https://link.springer.com/book/10.1007/978-3-030-65771-0

Tracking POG webpage: https://cms-tracking.docs.cern.ch/

Tracking POG CMS Talk: https://cms-talk.web.cern.ch/c/physics/trk/148

